Citation:
Wu O, Winzeck S, Giese A-K, Hancock BL, Etherton MR, Bouts MJRJ, Donahue K, Schirmer MD, Irie RE, Mocking SJT, McIntosh EC, Bezerra R, Kamnitsas K, Frid P, Wasselius J, Cole JW, Xu H, Holmegaard L, Jiménez-Conde J, Lemmens R, Lorentzen E, McArdle PF, Meschia JF, Roquer J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Stanne TM, Thijs V, Vagal A, Woo D, Bevan S, Kittner SJ, Mitchell BD, Rosand J, Worrall BB, Jern C, Lindgren AG, Maguire J, Rost NS. Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. Stroke 2019;50(7):1734-1741. Copy at https://tinyurl.com/y7bokuax