Publications by Year: 2012

2012
Edlow BL, Wu O. Advanced neuroimaging in traumatic brain injury. Semin Neurol 2012;32(4):374-400.Abstract
Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization, and interpretation.
Arkink EB, Bleeker EJW, Schmitz N, Schoonman GG, Wu O, Ferrari MD, van Buchem MA, van Osch MJ, Kruit MC. Cerebral perfusion changes in migraineurs: a voxelwise comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia 2012;32(4):279-88.Abstract
INTRODUCTION: The increased risk of cerebro- and cardiovascular disease in migraineurs may be the consequence of a systemic condition affecting whole body vasculature. At cerebrovascular level, this may be reflected by interictal global or regional cerebral perfusion abnormalities. Whether focal perfusion changes occur during interictal migraine has not been convincingly demonstrated. METHODS: We measured brain perfusion with dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) in 29 interictal female migraineurs (12 migraine with aura (MA), 17 migraine without aura (MO)), and 16 female controls. Perfusion maps were compared between these groups with a voxelwise (p < 0.001, uncorrected, minimum cluster size 20 voxels) and a region-of-interest approach. RESULTS: In whole brain voxelwise analyses interictal hyperperfusion was observed in the left medial frontal gyrus in migraineurs and in the inferior and middle temporal gyrus in MO patients, in comparison with controls. Hypoperfusion was seen in the postcentral gyrus and in the inferior temporal gyrus in MA patients and in the inferior frontal gyrus in MO patients. Additional focal sites of hyperperfusion were noted in subgroups based on attack frequency and disease history. Region-of-interest analyses of the pons, hypothalamus, occipital lobe, and cerebellum did not show interictal perfusion differences between migraineurs and controls. CONCLUSIONS: We conclude that interictal migraine is characterized by discrete areas of hyper- and hypoperfusion unspecific for migraine pathophysiology and not explaining the increased vulnerability of particular brain regions for cerebrovascular damage.
Greer DM, Yang J, Scripko PD, Sims JR, Cash S, Kilbride R, Wu O, Hafler JP, Schoenfeld DA, Furie KL. Clinical examination for outcome prediction in nontraumatic coma. Crit Care Med 2012;40(4):1150-6.Abstract
OBJECTIVES: Determine the utility of the neurologic examination in comatose patients from nontraumatic causes in the modern era. DESIGN: Prospective observational study. SETTING: Single academic medical center. PATIENTS: Data from 500 patients in nontraumatic coma collected sequentially from 2000 to 2007 in the emergency department and neuroscience, medical, and cardiac intensive care units. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical data were collected on days 0, 1, 3, and 7. Outcome was assessed at 6 months; good outcome was determined at two levels by modified Rankin Scale, ≤3 as independence and ≤4 as moderate but not severe disability. A classification and regression tree analysis was performed to determine prognostic variables, creating predictive algorithms of good vs. poor outcome for each day. Patients with coma attributable to subarachnoid hemorrhage (4/80; 5%) or global hypoxic-ischemic injury (20/202, 10%) were more likely to achieve good outcomes. The pupillary reflex was an important determinant, regardless of day or modified Rankin Scale cut point (mean odds ratio 12.51, range [6.01, 22.56] for modified Rankin Scale ≤3; mean odds ratio 19.26, range [5.38, 42.26] for modified Rankin Scale ≤4). A less robust effect was seen for oculocephalic reflexes (mean odds ratio 62.61, range [2.24, 177] for modified Rankin Scale ≤3; mean odds ratio 34.13, range [4.95, 89.93] for modified Rankin Scale ≤4). The motor response was selected as a predictor of outcome only on day 0 (odds ratio 2.35, 95% confidence interval 0.64-5.74 for modified Rankin Scale ≤3; odds ratio 2.1, 95% confidence interval 0.81-4.24 for modified Rankin Scale score ≤4). Age was not associated with outcome. CONCLUSIONS: The clinical neurologic examination remains central to determining prognosis in nontraumatic coma. Additional clinical and diagnostic variables may also aid in outcome prediction for specific disease states.
Wu O, Lu J, Mandeville JB, Murata Y, Egi Y, Dai G, Marota JJ, Diwan I, Dijkhuizen RM, Kwong KK, Lo EH, Singhal AB. Dynamic functional cerebral blood volume responses to normobaric hyperoxia in acute ischemic stroke. J Cereb Blood Flow Metab 2012;32(9):1800-9.Abstract
Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours. Functional cerebral blood volume responses to NBO were spatially and temporally heterogeneous. Contralateral healthy tissue responded consistently with vasoconstriction that increased with time. No significant responses were evident in the acute DWI lesion. In hypoperfused regions surrounding the acute DWI lesion, tissue that remained viable until the end of the experiment showed relative preservation of mean fCBV at early time points, with some rats showing increased fCBV (vasodilation); however, these regions later exhibited significantly decreased fCBV (vasoconstriction). Tissue that became DWI abnormal by study-end initially showed marginal fCBV changes that later became moderate fCBV reductions. Our results suggest that a reverse-steal hemodynamic effect may occur in peripheral ischemic zones during NBO treatment of focal stroke. In addition, CBV responses to NBO challenge may have potential as an imaging marker to distinguish ischemic core from salvageable tissues.
Wu O, Benner T, Roccatagliata L, Zhu M, Schaefer PW, Sorensen AG, Singhal AB. Evaluating effects of normobaric oxygen therapy in acute stroke with MRI-based predictive models. Med Gas Res 2012;2(1):5.Abstract
BACKGROUND: Voxel-based algorithms using acute multiparametric-MRI data have been shown to accurately predict tissue outcome after stroke. We explored the potential of MRI-based predictive algorithms to objectively assess the effects of normobaric oxygen therapy (NBO), an investigational stroke treatment, using data from a pilot study of NBO in acute stroke. METHODS: The pilot study of NBO enrolled 11 patients randomized to NBO administered for 8 hours, and 8 Control patients who received room-air. Serial MRIs were obtained at admission, during gas therapy, post-therapy, and pre-discharge. Diffusion/perfusion MRI data acquired at admission (pre-therapy) was used in generalized linear models to predict the risk of lesion growth at subsequent time points for both treatment scenarios: NBO or Control. RESULTS: Lesion volume sizes 'during NBO therapy' predicted by Control-models were significantly larger (P = 0.007) than those predicted by NBO models, suggesting that ischemic lesion growth is attenuated during NBO treatment. No significant difference was found between the predicted lesion volumes at later time-points. NBO-treated patients, despite showing larger lesion volumes on Control-models than NBO-models, tended to have reduced lesion growth. CONCLUSIONS: This study shows that NBO has therapeutic potential in acute ischemic stroke, and demonstrates the feasibility of using MRI-based algorithms to evaluate novel treatments in early-phase clinical trials.
Cheng B, Ebinger M, Kufner A, Köhrmann M, Wu O, Kang D-W, Liebeskind D, Tourdias T, Singer OC, Christensen S, Warach S, Luby M, Fiebach JB, Fiehler J, Gerloff C, Thomalla G. Hyperintense vessels on acute stroke fluid-attenuated inversion recovery imaging: associations with clinical and other MRI findings. Stroke 2012;43(11):2957-61.Abstract
BACKGROUND AND PURPOSE: Hyperintense vessels (HVs) have been observed in fluid-attenuated inversion recovery imaging of patients with acute ischemic stroke and been linked to slow flow in collateral arterial circulation. Given the potential importance of HV, we used a large, multicenter data set of patients with stroke to clarify which clinical and imaging factors play a role in HV. METHODS: We analyzed data of 516 patients from the previously published PRE-FLAIR study (PREdictive value of FLAIR and DWI for the identification of acute ischemic stroke patients≤3 and ≤4.5 hours of symptom onset-a multicenter study) study. Patients were studied by MRI within 12 hours of symptom onset. HV were defined as hyperintensities in fluid-attenuated inversion recovery corresponding to the typical course of a blood vessel that was not considered the proximal, occluded main artery ipsilateral to the diffusion restriction. Presence of HV was rated by 2 observers and related to clinical and imaging findings. RESULTS: Presence of HV was identified in 240 of all 516 patients (47%). Patients with HV showed larger initial ischemic lesion volumes (median, 12.3 versus 4.9 mL; P<0.001) and a more severe clinical impairment (median National Institutes of Health Stroke Scale 10.5 versus 6; P<0.001). In 198 patients with MR angiography, HVs were found in 80% of patients with vessel occlusion and in 17% without vessel occlusion. In a multivariable logistic regression model, vessel occlusion was associated with HV (OR, 21.7%; 95% CI, 9.6-49.9; P<0.001). HV detected vessel occlusion with a specificity of 0.86 (95% CI, 0.80-0.90) and sensitivity of 0.76 (95% CI, 0.69-0.83). CONCLUSIONS: HVs are a common finding associated with proximal arterial occlusions and more severe strokes. HVs predict arterial occlusion with high diagnostic accuracy.
Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L, Grant PE, Greer DM, Greenberg SM, Kinney HC, Folkerth RD. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 2012;71(6):531-46.Abstract
The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.
Song SS, Latour LL, Ritter CH, Wu O, Tighiouart M, Hernandez DA, Ku KD, Luby M, Warach S. A pragmatic approach using magnetic resonance imaging to treat ischemic strokes of unknown onset time in a thrombolytic trial. Stroke 2012;43(9):2331-5.Abstract
BACKGROUND AND PURPOSE: Toward the goal of designing a clinical trial using imaging parameters to treat stroke patients with unknown onset time, we investigated the timing of changes on MRI in patients with well-defined stroke onset. METHODS: Hypothesis-generating (n=85) and confirmatory (n=111) samples were scored by blinded readers for fluid-attenuated inversion recovery (FLAIR) hyperintensity in diffusion-positive regions. Reader-measured signal intensity ratio (SIR) of the lesion to contralateral tissue was compared with SIR measured by coregistration. RESULTS: Lesion conspicuity increased with time on FLAIR (P=0.006). Qualitative assessment of FLAIR-negative vs FLAIR hyperintensity (k=0.7091; 95% CI, 0.61-0.81) showed good interrater agreement. Subtle hyperintensity was less reliably categorized (k=0.59; 95% CI, 0.47-0.71). Reader-measured SIR <1.15 can identify patients within the treatable time window of 4.5 hours (positive predictive value=0.90). The SIR was greater for right hemisphere lesions (P=0.04) for a given reported time from stroke symptom onset. CONCLUSIONS: The SIR on FLAIR provides a quantitative tool to identify early ischemic strokes. In developing SIR thresholds, right hemisphere lesions may confound the accurate estimate of stroke onset time. Image coregistration for thrombolytic trial enrollment is not necessary. A SIR <1.15 on FLAIR yields a practical estimate of stroke onset within 4.5 hours.
Deipolyi AR, Wu O, Macklin EA, Schaefer PW, Schwamm LH, Gilberto Gonzalez R, Copen WA. Reliability of cerebral blood volume maps as a substitute for diffusion-weighted imaging in acute ischemic stroke. J Magn Reson Imaging 2012;36(5):1083-7.Abstract
PURPOSE: To assess the reliability of cerebral blood volume (CBV) maps as a substitute for diffusion-weighted MRI (DWI) in acute ischemic stroke. In acute stroke, DWI is often used to identify irreversibly injured "core" tissue. Some propose using perfusion imaging, specifically CBV maps, in place of DWI. We examined whether CBV maps can reliably subsitute for DWI, and assessed the effect of scan duration on calculated CBV. MATERIALS AND METHODS: We retrospectively identified 58 patients who underwent DWI and MR perfusion imaging within 12 h of stroke onset. CBV in each DWI lesion's center was divided by CBV in the normal-appearing contralateral hemisphere to yield relative regional CBV (rrCBV). The proportion of lesions with decreased rrCBV was calculated. After using the full scan duration (110 s after contrast injection), rrCBV was recalculated using simulated shorter scans. The effect of scan duration on rrCBV was tested with linear regression. RESULTS: Using the full scan duration (110 s), rrCBV was increased in most DWI lesions (62%; 95% confidence interval, 48-74%). rrCBV increased with increasing scan duration (P < 0.001). Even with the shortest duration (39.5 s) rrCBV was increased in 33% of lesions. CONCLUSION: Because DWI lesions may have elevated or decreased CBV, CBV maps cannot reliably substitute for DWI in identifying the infarct core.