Gökçay F, Arsava EM, Baykaner T, Vangel M, Garg P, Wu O, Singhal AB, Furie KL, Sorensen AG, Ay H.
Age-dependent susceptibility to infarct growth in women. Stroke 2011;42(4):947-51.
AbstractBACKGROUND AND PURPOSE:
It is not known if there is a relationship between gender and tissue outcome in human ischemic stroke. We sought to identify whether the proportion of initially ischemic to eventually infarcted tissue was different between men and women with ischemic stroke.
METHODS:
We studied 141 consecutive patients with acute ischemic stroke who had a baseline MRI obtained within 12 hours of symptom onset, a follow-up imaging on Day 4 or later, and diffusion-weighted imaging/mean transmit time mismatch on initial MRI. Lesion growth was calculated as percentage of mismatch tissue that underwent infarction on follow-up (percentage mismatch lost). Multivariable analyses explored the effect of gender and other predictors of tissue outcome on percentage mismatch lost.
RESULTS:
There was no difference in median percentage mismatch lost between men (19%) and women (11%; P=0.720). There was, however, an interaction between gender and age; median percentage mismatch lost was 7% (0% to 12%) in women and 18% (1% to 35%) in men younger than the population median (71 years, P=0.061). The percentage mismatch lost was not different between men and women ≥71 years old (25% in both groups). The linear regression model revealed gender (P=0.027) and the interaction between age and gender (P=0.023) as independent predictors of percentage mismatch lost.
CONCLUSIONS:
There is an age-by-gender interaction in tissue outcome after ischemic stroke; brain infarcts in women <70 years grow approximately 50% less than infarcts in their male counterparts. These findings extend the well-known concept that there is a differential age-by-gender effect on stroke incidence, mortality, and functional outcome to the tissue level.
Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, Kim JS, Breuer L, Singer OC, Warach S, Christensen S, Treszl A, Forkert ND, Galinovic I, Rosenkranz M, Engelhorn T, Köhrmann M, Endres M, Kang D-W, Dousset V, Sorensen GA, Liebeskind DS, Fiebach JB, Fiehler J, Gerloff C.
DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 2011;10(11):978-86.
AbstractBACKGROUND: Many patients with stroke are precluded from thrombolysis treatment because the time from onset of their symptoms is unknown. We aimed to test whether a mismatch in visibility of an acute ischaemic lesion between diffusion-weighted MRI (DWI) and fluid-attenuated inversion recovery (FLAIR) MRI (DWI-FLAIR mismatch) can be used to detect patients within the recommended time window for thrombolysis.
METHODS: In this multicentre observational study, we analysed clinical and MRI data from patients presenting between Jan 1, 2001, and May 31, 2009, with acute stroke for whom DWI and FLAIR were done within 12 h of observed symptom onset. Two neurologists masked to clinical data judged the visibility of acute ischaemic lesions on DWI and FLAIR imaging, and DWI-FLAIR mismatch was diagnosed by consensus. We calculated predictive values of DWI-FLAIR mismatch for the identification of patients with symptom onset within 4·5 h and within 6 h and did multivariate regression analysis to identify potential confounding covariates. This study is registered with ClinicalTrials.gov, number NCT01021319.
FINDINGS: The final analysis included 543 patients. Mean age was 66·0 years (95% CI 64·7-67·3) and median National Institutes of Health Stroke Scale score was 8 (IQR 4-15). Acute ischaemic lesions were identified on DWI in 516 patients (95%) and on FLAIR in 271 patients (50%). Interobserver agreement for acute ischaemic lesion visibility on FLAIR imaging was moderate (κ=0·569, 95% CI 0·504-0·634). DWI-FLAIR mismatch identified patients within 4·5 h of symptom onset with 62% (95% CI 57-67) sensitivity, 78% (72-84) specificity, 83% (79-88) positive predictive value, and 54% (48-60) negative predictive value. Multivariate regression analysis identified a longer time to MRI (p<0·0001), a lower age (p=0·0009), and a larger DWI lesion volume (p=0·0226) as independent predictors of lesion visibility on FLAIR imaging.
INTERPRETATION: Patients with an acute ischaemic lesion detected with DWI but not with FLAIR imaging are likely to be within a time window for which thrombolysis is safe and effective. These findings lend support to the use of DWI-FLAIR mismatch for selection of patients in a future randomised trial of thrombolysis in patients with unknown time of symptom onset.
FUNDING: Else Kröner-Fresenius-Stiftung, National Institutes of Health.
Kwong KK, Reese TG, Nelissen K, Wu O, Chan S-T, Benner T, Mandeville JB, Foley M, Vanduffel W, Chesler DA.
Early time points perfusion imaging. Neuroimage 2011;54(2):1070-82.
AbstractThe aim was to investigate the feasibility of making relative cerebral blood flow (rCBF) maps from MR images acquired with short TR by measuring the initial arrival amount of Gd-DTPA evaluated within a time window before any contrast agent has a chance to leave the tissue. We named this rCBF measurement technique utilizing the early data points of the Gd-DTPA bolus the "early time points" method (ET), based on the hypothesis that early time point signals were proportional to rCBF. Simulation data were used successfully to examine the ideal behavior of ET while monkey's MRI results offered encouraging support to the utility of ET for rCBF calculation. A better brain coverage for ET could be obtained by applying the Simultaneous Echo Refocusing (SER) EPI technique. A recipe to run ET was presented, with attention paid to the noise problem around the time of arrival (TOA) of the contrast agent.
Kwong KK, Wu O, Chan S-T, Nelissen K, Kholodov M, Chesler DA.
Early time points perfusion imaging: relative time of arrival, maximum derivatives and fractional derivatives. Neuroimage 2011;57(3):979-90.
AbstractTime of arrival (TOA) of a bolus of contrast agent to the tissue voxel is a reference time point critical for the Early Time Points Perfusion Imaging Method (ET) to make relative cerebral blood flow (rCBF) maps. Due to the low contrast to noise (CNR) condition at TOA, other useful reference time points known as relative time of arrival data points (rTOA) are investigated. Candidate rTOA's include the time to reach the maximum derivative, the maximum second derivative, and the maximum fractional derivative. Each rTOA retains the same relative time distance from TOA for all tissue flow levels provided that ET's basic assumption is met, namely, no contrast agent has a chance to leave the tissue before the time of rTOA. The ET's framework insures that rCBF estimates by different orders of the derivative are theoretically equivalent to each other and monkey perfusion imaging results supported the theory. In rCBF estimation, maximum values of higher order fractional derivatives may be used to replace the maximum derivative which runs a higher risk of violating ET's assumption. Using the maximum values of the derivative of orders ranging from 1 to 1.5 to 2, estimated rCBF results were found to demonstrate a gray-white matter ratio of approximately 3, a number consistent with flow ratio reported in the literature.
Wu O, Schwamm LH, Sorensen GA.
Imaging stroke patients with unclear onset times. Neuroimaging Clin N Am 2011;21(2):327-44, xi.
AbstractStroke is a leading cause of death and adult morbidity worldwide. By defining stroke symptom onset by the time the patient was last known to be well, many patients whose onsets are unwitnessed are automatically ineligible for thrombolytic therapy. Advanced brain imaging may serve as a substitute witness to estimate stroke onset and duration in those patients who do not have a human witness. This article reviews and compares some of these imaging-based approaches to thrombolysis eligibility, which can potentially expand the use of thrombolytic therapy to a broader population of acute stroke patients.
Kimberly TW, Wu O, Arsava ME, Garg P, Ji R, Vangel M, Singhal AB, Ay H, Sorensen GA.
Lower hemoglobin correlates with larger stroke volumes in acute ischemic stroke. Cerebrovasc Dis Extra 2011;1(1):44-53.
AbstractBACKGROUND: Hemoglobin tetramers are the major oxygen-carrying molecules within the blood. We hypothesized that a lower hemoglobin level and its reduced oxygen-carrying capacity would associate with larger infarction in acute ischemic stroke patients.
METHODS: We studied 135 consecutive patients with acute ischemic stroke and perfusion brain MRI. We explored the association of admission hemoglobin with initial infarct volumes on acute images and the volume of infarct expansion on follow-up images. Multivariable linear regression was performed to analyze the independent effect of hemoglobin on imaging outcomes.
RESULTS: Bivariate analyses showed a significant inverse correlation between hemoglobin and initial volume in diffusion-weighted imaging (r = -0.20, p = 0.02) and absolute infarct growth (r = -0.20, p = 0.02). Multivariable linear regression modeling revealed that hemoglobin remained independently predictive of larger infarct volumes acutely (p < 0.005) and with greater infarct expansion (p < 0.01) after adjusting for known covariates.
CONCLUSIONS: Hemoglobin level at the time of acute ischemic stroke associates with larger infarcts and increased infarct growth. Clarification of the mechanism of this effect may yield novel insights for therapy.
Copen WA, Schaefer PW, Wu O.
MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am 2011;21(2):259-83, x.
AbstractMagnetic resonance (MR) perfusion imaging offers the potential for measuring brain perfusion in acute stroke patients, at a time when treatment decisions based on these measurements may affect outcomes dramatically. Rapid advancements in both acute stroke therapy and perfusion imaging techniques have resulted in continuing redefinition of the role that perfusion imaging should play in patient management. This review discusses the basic pathophysiology of acute stroke, the utility of different kinds of perfusion images, and research on the continually evolving role of MR perfusion imaging in acute stroke care.
Wu O, Batista LM, Lima FO, Vangel MG, Furie KL, Greer DM.
Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography. Stroke 2011;42(4):985-92.
AbstractBACKGROUND AND PURPOSE: Early assessment of the likelihood of neurological recovery in comatose cardiac arrest survivors remains challenging. We hypothesize that quantitative noncontrast computed tomography (NCCT) combined with neurological assessments, are predictive of outcome.
METHODS: We analyzed data sets acquired from comatose cardiac arrest patients who underwent CT within 72 hours of arrest. Images were semiautomatically segmented into anatomic regions. Median Hounsfield units (HU) were measured regionally and in the whole brain (WB). Outcome was based on the 6-month modified Rankin Scale (mRS) score. Logistic regression was used to combine Glasgow Coma Scale (GCS) score measured on Day 3 post arrest (GCS_Day3) with imaging to predict poor outcome (mRS>4).
RESULTS: WB HU (P=0.02) and the ratio of HU in the putamen to the posterior limb of the internal capsule (PLIC) (P=0.004) from 175 datasets from 151 patients were univariate predictors of poor outcome. Thirty-three patients underwent hypothermia treatment. Multivariate analysis showed that combining median HU in the putamen (P=0.0006) and PLIC (P=0.007) was predictive of poor outcome. Combining WB HU and GCS_Day3 resulted in 72% [61% to 80%] sensitivity and 100% [73% to 100%] specificity for predicting poor outcome in 86 patients with measurable GCS_Day3. This was an improvement over prognostic performance based on GCS_Day3≤8 (98% sensitive but 71% specific).
DISCUSSION: Combining density changes on CT with GCS_Day3 may be useful for predicting poor outcome in comatose cardiac arrest patients who are neither rapidly improving nor deteriorating. Improved prognostication with CT compared with neurological assessments can be achieved in patients treated with hypothermia.