Publications by Year: 2008

2008
Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J Magn Reson Imaging 2008;27(6):1371-81.Abstract
PURPOSE: To investigate the potential of novel postprocessing and visualization techniques to distinguish presence of collateral flow using Bolus Tracking MRI. Collateral blood supply is believed to be of paramount importance in acute stroke, yet clinical evaluation is challenging as the gold standard digital subtraction angiography is often not feasible in the acute scenario. MATERIALS AND METHODS: In principle, bolus arrival delay data contains information about the route of blood supply into tissue and hereby presence of collateral flow patterns. We first examined the potential of current clinical bolus tracking protocols to accurately characterize bolus arrival delay. Using the simulation results, we analyzed bolus tracking data from one normal volunteer and one acute stroke patient. RESULTS: The bolus arrival patterns in the volunteer and in the normal hemisphere of the patient were found to be qualitatively similar and in good agreement with physiology. The bolus was seen to spread from the larger arteries toward the periphery. The stroke hemisphere in the patient indicated a retrograde direction of flow on the cortical mantle consistent with leptomeningeal vessels. CONCLUSION: Bolus tracking MRI can likely be used to distinguish collateral flow patterns from normal flow patterns.
Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron J-C, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee T-Y, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. Stroke 2008;39(5):1621-8.Abstract
The recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them.
Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron J-C, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee T-Y, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. AJNR Am J Neuroradiol 2008;29(5):e23-30.Abstract
The recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them.
Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J Magn Reson Imaging 2008;27(6):1371-81.Abstract
PURPOSE: To investigate the potential of novel postprocessing and visualization techniques to distinguish presence of collateral flow using Bolus Tracking MRI. Collateral blood supply is believed to be of paramount importance in acute stroke, yet clinical evaluation is challenging as the gold standard digital subtraction angiography is often not feasible in the acute scenario. MATERIALS AND METHODS: In principle, bolus arrival delay data contains information about the route of blood supply into tissue and hereby presence of collateral flow patterns. We first examined the potential of current clinical bolus tracking protocols to accurately characterize bolus arrival delay. Using the simulation results, we analyzed bolus tracking data from one normal volunteer and one acute stroke patient. RESULTS: The bolus arrival patterns in the volunteer and in the normal hemisphere of the patient were found to be qualitatively similar and in good agreement with physiology. The bolus was seen to spread from the larger arteries toward the periphery. The stroke hemisphere in the patient indicated a retrograde direction of flow on the cortical mantle consistent with leptomeningeal vessels. CONCLUSION: Bolus tracking MRI can likely be used to distinguish collateral flow patterns from normal flow patterns.
Ay H, Arsava ME, Vangel M, Oner B, Zhu M, Wu O, Singhal A, Koroshetz WJ, Sorensen GA. Interexaminer difference in infarct volume measurements on MRI: a source of variance in stroke research. Stroke 2008;39(4):1171-6.Abstract
BACKGROUND AND PURPOSE: The measurement of ischemic lesion volume on diffusion- (DWI) and perfusion-weighted MRI (PWI) is examiner dependent. We sought to quantify the variance imposed by measurement error in DWI and PWI lesion volume measurements in ischemic stroke. METHODS: Fifty-eight consecutive patients with DWI and PWI within 12 hours of symptom onset and follow-up MRI on >or= day-5 were studied. Two radiologists blinded to each other measured lesion volumes by manual outlining on each image. Interexaminer reliability was evaluated by intraclass correlation coefficients (ICC) and relative paired difference or RPD (ratio of difference between 2 measurements to their mean). The ratio of between-examiner variability to between-subject variability (variance ratio) was calculated for each imaging parameter. RESULTS: The correlation (ICC) between examiners ranged from 0.93 to 0.99. The median RPD was 10.0% for DWI, 14.1% for mean transit time, 18.9% for cerebral blood flow, 21.0% for cerebral blood volume, 16.8% for DWI/MTT mismatch, and 6.3% for chronic T2-weighted images. There was negative correlation between RPD and lesion volume in all but chronic T2-weighted images. The variance ratio ranged between 0.02 and 0.10. CONCLUSIONS: Despite high correlation between volume measurements of abnormal regions on DWI and PWI by different examiners, substantial differences in individual measurements can still occur. The magnitude of variance from measurement error is primarily determined by the type of imaging and lesion volume. Minimizing this source of variance will better enable imaging to deliver on its promise of smaller sample size.
van der Zijden JP, Bouts MJRJ, Wu O, Roeling TA, Bleys RL, van der Toorn A, Dijkhuizen RM. Manganese-enhanced MRI of brain plasticity in relation to functional recovery after experimental stroke. J Cereb Blood Flow Metab 2008;28(4):832-40.Abstract
Restoration of function after stroke may be associated with structural remodeling of neuronal connections outside the infarcted area. However, the spatiotemporal profile of poststroke alterations in neuroanatomical connectivity in relation to functional recovery is still largely unknown. We performed in vivo magnetic resonance imaging (MRI)-based neuronal tract tracing with manganese in combination with immunohistochemical detection of the neuronal tracer wheat-germ agglutinin horseradish peroxidase (WGA-HRP), to assess changes in intra- and interhemispheric sensorimotor network connections from 2 to 10 weeks after unilateral stroke in rats. In addition, functional recovery was measured by repetitive behavioral testing. Four days after tracer injection in perilesional sensorimotor cortex, manganese enhancement and WGA-HRP staining were decreased in subcortical areas of the ipsilateral sensorimotor network at 2 weeks after stroke, which was restored at later time points. At 4 to 10 weeks after stroke, we detected significantly increased manganese enhancement in the contralateral hemisphere. Behaviorally, sensorimotor functions were initially disturbed but subsequently recovered and plateaued 17 days after stroke. This study shows that manganese-enhanced MRI can provide unique in vivo information on the spatiotemporal pattern of neuroanatomical plasticity after stroke. Our data suggest that the plateau stage of functional recovery is associated with restoration of ipsilateral sensorimotor pathways and enhanced interhemispheric connectivity.
Hjort N, Wu O, Ashkanian M, Sølling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Østergaard L. MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 2008;39(3):1025-8.Abstract
BACKGROUND AND PURPOSE: Blood-brain barrier disruption may be a predictor of hemorrhagic transformation (HT) in ischemic stroke. We hypothesize that parenchymal enhancement (PE) on postcontrast T1-weighted MRI predicts and localizes subsequent HT. METHODS: In a prospective study, 33 tPA-treated stroke patients were imaged by perfusion-weighted imaging, T1 and FLAIR before thrombolytic therapy and after 2 and 24 hours. RESULTS: Postcontrast T1 PE was found in 5 of 32 patients (16%) 2 hours post-thrombolysis. All 5 patients subsequently showed HT compared to 11 of 26 patients without PE (P=0.043, specificity 100%, sensitivity 31%), with exact anatomic colocation of PE and HT. Enhancement of cerebrospinal fluid on FLAIR was found in 4 other patients, 1 of which developed HT. Local reperfusion was found in 4 of 5 patients with PE, whereas reperfusion was found in all cases of cerebrospinal fluid hyperintensity. CONCLUSIONS: PE detected 2 hours after thrombolytic therapy predicts HT with high specificity. Contrast-enhanced MRI may provide a tool for studying HT and targeting future therapies to reduce risk of hemorrhagic complications.
Ay H, Arsava ME, Rosand J, Furie KL, Singhal AB, Schaefer PW, Wu O, Gonzalez GR, Koroshetz WJ, Sorensen GA. Severity of leukoaraiosis and susceptibility to infarct growth in acute stroke. Stroke 2008;39(5):1409-13.Abstract
BACKGROUND AND PURPOSE: Leukoaraiosis (LA) is associated with structural and functional vascular changes that may compromise tissue perfusion at the microvascular level. We hypothesized that the volume of LA correlated with the proportion of initially ischemic but eventually infarcted tissue in acute human stroke. METHODS: We studied 61 consecutive patients with diffusion-weighted imaging-mean transit time mismatch. All patients were scanned twice within 12 hours of symptom onset and between days 4 and 30. We explored the relationship between the volume of white matter regions with LA on acute images and the proportion of diffusion-weighted imaging-mean transit time mismatch tissue that progressed to infarction (percentage mismatch lost). RESULTS: Bivariate analyses showed a statistically significant correlation between percentage mismatch lost and LA volume (r=0.33, P<0.01). A linear regression model with percentage mismatch lost as response and LA volume, acute diffusion-weighted imaging and mean transit time volumes, age, admission blood glucose level, admission mean arterial blood pressure, etiologic stroke subtype, time to acute MRI, and time between acute and follow-up imaging as covariates revealed that LA volume was an independent predictor of infarct growth (P=0.04). The adjusted percentage mismatch lost in the highest quartile of LA volume was 1.9-fold (95% CI: 1.2 to 3.1) greater than the percentage mismatch lost in the lowest quartile. CONCLUSIONS: LA volume at the time of acute ischemic stroke is a predictor infarct growth. Because LA is associated with factors that modulate tissue perfusion as well as tissue capacity for handling of ischemia, LA volume appears to be a composite predictive marker for the fate of acutely ischemic tissue.