2017
Rannikmäe K, Sivakumaran V, Millar H, Malik R, Anderson CD, Chong M, Dave T, Falcone GJ, Fernandez-Cadenas I, Jimenez-Conde J, Lindgren A, Montaner J, O'Donnell M, Paré G, Radmanesh F, Rost NS, Slowik A, Söderholm M, Traylor M, Pulit SL, Seshadri S, Worrall BB, Woo D, Markus HS, Mitchell BD, Dichgans M, Rosand J, Sudlow CLM.
COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls. Neurology 2017;89(17):1829-1839.
AbstractOBJECTIVE: To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD.
METHODS: We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (COL4A1, COL4A2, NOTCH3, HTRA1, TREX1, and CECR1) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing.
RESULTS: A locus in COL4A2 was associated (significance threshold p < 3.5 × 10-4) with both lacunar IS (lead SNP rs9515201: odds ratio [OR] 1.17, 95% confidence interval [CI] 1.11-1.24, p = 6.62 × 10-8) and deep ICH (lead SNP rs4771674: OR 1.28, 95% CI 1.13-1.44, p = 5.76 × 10-5). A SNP in HTRA1 was associated (significance threshold p < 5.5 × 10-4) with lacunar IS (rs79043147: OR 1.23, 95% CI 1.10-1.37, p = 1.90 × 10-4) and less robustly with deep ICH. There was no clear evidence for association of common variants in either COL4A2 or HTRA1 with non-SVD strokes or in any of the other genes with any stroke phenotype.
CONCLUSIONS: These results provide evidence of shared genetic determinants and suggest common pathophysiologic mechanisms of distinct ischemic and hemorrhagic cerebral SVD stroke phenotypes, offering new insights into the causal mechanisms of cerebral SVD.
Giese A-K, Schirmer MD, Donahue KL, Cloonan L, Irie R, Winzeck S, Bouts MJRJ, McIntosh EC, Mocking SJ, Dalca AV, Sridharan R, Xu H, Frid P, Giralt-Steinhauer E, Holmegaard L, Roquer J, Wasselius J, Cole JW, McArdle PF, Broderick JP, Jimenez-Conde J, Jern C, Kissela BM, Kleindorfer DO, Lemmens R, Lindgren A, Meschia JF, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Thijs V, Woo D, Worrall BB, Kittner SJ, Mitchell BD, Rosand J, Golland P, Wu O, Rost NS.
Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study. Neurol Genet 2017;3(5):e180.
AbstractOBJECTIVE: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study.
METHODS: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.
CONCLUSIONS: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
Edlow BL, Chatelle C, Spencer CA, Chu CJ, Bodien YG, O'Connor KL, Hirschberg RE, Hochberg LR, Giacino JT, Rosenthal ES, Wu O.
Early detection of consciousness in patients with acute severe traumatic brain injury. Brain 2017;140(9):2399-2414.
AbstractSee Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence of language function, responses to language and music were more frequently observed than responses to motor imagery (62.5-80% versus 33.3-42.9%). Similarly, in 16 matched healthy subjects, responses to language and music were more frequently observed than responses to motor imagery (87.5-100% versus 68.8-75.0%). Except for one patient who died in the intensive care unit, all patients with cognitive motor dissociation and higher-order cortex motor dissociation recovered beyond a confusional state by 6 months. However, 6-month outcomes were not associated with early functional magnetic resonance imaging and electroencephalography responses for the entire cohort. These observations suggest that functional magnetic resonance imaging and electroencephalography can detect command-following and higher-order cortical function in patients with acute severe traumatic brain injury. Early detection of covert consciousness and cortical responses in the intensive care unit could alter time-sensitive decisions about withholding life-sustaining therapies.
Copen WA, Yoo AJ, Rost NS, Morais LT, Schaefer PW, González GR, Wu O.
In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core. PLoS One 2017;12(11):e0188891.
AbstractBACKGROUND: Neuroimaging may guide acute stroke treatment by measuring the volume of brain tissue in the irreversibly injured "ischemic core." The most widely accepted core volume measurement technique is diffusion-weighted MRI (DWI). However, some claim that measuring regional cerebral blood flow (CBF) with CT perfusion imaging (CTP), and labeling tissue below some threshold as the core, provides equivalent estimates. We tested whether any threshold allows reliable substitution of CBF for DWI.
METHODS: 58 patients with suspected stroke underwent DWI and CTP within six hours of symptom onset. A neuroradiologist outlined DWI lesions. In CBF maps, core pixels were defined by thresholds ranging from 0%-100% of normal, in 1% increments. Replicating prior studies, we used receiver operating characteristic (ROC) curves to select thresholds that optimized sensitivity and specificity in predicting DWI-positive pixels, first using only pixels on the side of the brain where infarction was clinically suspected ("unilateral" method), then including both sides ("bilateral"). We quantified each method and threshold's accuracy in estimating DWI volumes, using sums of squared errors (SSE). For the 23 patients with follow-up studies, we assessed whether CBF-derived volumes inaccurately exceeded follow-up infarct volumes.
RESULTS: The areas under the ROC curves were 0.89 (unilateral) and 0.90 (bilateral). Various metrics selected optimum CBF thresholds ranging from 29%-32%, with sensitivities of 0.79-0.81, and specificities of 0.83-0.85. However, for the unilateral and bilateral methods respectively, volume estimates derived from all CBF thresholds above 28% and 22% were less accurate than disregarding imaging and presuming every patient's core volume to be zero. The unilateral method with a 30% threshold, which recent clinical trials have employed, produced a mean core overestimation of 65 mL (range: -82-191), and exceeded follow-up volumes for 83% of patients, by up to 191 mL.
CONCLUSION: CTP-derived CBF maps cannot substitute for DWI in measuring the ischemic core.
Etherton MR, Wu O, Cougo P, Giese A-K, Cloonan L, Fitzpatrick KM, Kanakis AS, Boulouis G, Karadeli HH, Lauer A, Rosand J, Furie KL, Rost NS.
Integrity of normal-appearing white matter and functional outcomes after acute ischemic stroke. Neurology 2017;88(18):1701-1708.
AbstractOBJECTIVE: To characterize the effect of white matter microstructural integrity on cerebral tissue and long-term functional outcomes after acute ischemic stroke (AIS).
METHODS: Consecutive AIS patients with brain MRI acquired within 48 hours of symptom onset and 90-day modified Rankin Scale (mRS) score were included. Acute infarct volume on diffusion-weighted imaging (DWIv) and white matter hyperintensity volume (WMHv) on T2 fluid-attenuated inversion recovery MRI were measured. Median fractional anisotropy (FA), mean diffusivity, radial diffusivity, and axial diffusivity values were calculated within normal-appearing white matter (NAWM) in the hemisphere contralateral to the acute lesion. Regression models were used to assess the association between diffusivity metrics and acute cerebral tissue and long-term functional outcomes in AIS. Level of significance was set at p < 0.05 for all analyses.
RESULTS: Among 305 AIS patients with DWIv and mRS score, mean age was 64.4 ± 15.9 years, and 183 participants (60%) were male. Median NIH Stroke Scale (NIHSS) score was 3 (interquartile range [IQR] 1-8), and median normalized WMHv was 6.19 cm3 (IQR 3.0-12.6 cm3). Admission stroke severity (β = 0.16, p < 0.0001) and small vessel stroke subtype (β = -1.53, p < 0.0001), but not diffusivity metrics, were independently associated with DWIv. However, median FA in contralesional NAWM was independently associated with mRS score (β = -9.74, p = 0.02), along with age, female sex, NIHSS score, and DWIv.
CONCLUSIONS: FA decrease in NAWM contralateral to the acute infarct is associated with worse mRS category at 90 days after stroke. These data suggest that white matter integrity may contribute to functional recovery after stroke.
Greer DM, Wu O.
Neuroimaging in Cardiac Arrest Prognostication. Semin Neurol 2017;37(1):66-74.
AbstractNeuroimaging is commonly utilized in the evaluation of post-cardiac arrest patients, providing a unique ability to visualize and quantify structural brain injury that can complement clinical and electrophysiologic data. Despite its lack of validation, we would advocate that neuroimaging is a valuable prognostication tool, worthy of further study, and an essential part of the armamentarium when used in combination with other modalities in the assessment of the post-cardiac arrest patient. Herein, we discuss the data and its limitations for neuroimaging to date and how it is being studied prospectively. We present current guidelines recommendations for prognostication after global hypoxic-ischemic injury, focusing primarily on computed tomography (CT) and magnetic resonance imaging (MRI), as they are the most widely used modalities. We present promising results from advanced neuroimaging techniques, and provide practical advice for the clinician caring for these patients in the real world.
Bouts MJRJ, Tiebosch IA, Rudrapatna US, van der Toorn A, Wu O, Dijkhuizen RM.
Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms. J Cereb Blood Flow Metab 2017;37(8):3065-3076.
AbstractEstimation of hemorrhagic transformation (HT) risk is crucial for treatment decision-making after acute ischemic stroke. We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue plasminogen activator (Group I: n = 6) or vehicle (Group II: n = 7). Brain MRI measurements of T2, T2*, diffusion, perfusion, and blood-brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the receiver-operating characteristic curve (AUC) = 0.85 ± 0.14; Group II: AUC = 0.89 ± 0.09), with significant improvement over perfusion- or permeability-based thresholding methods. However, overlap between predicted and actual tissue outcome was significantly lower for hemorrhage prediction models (maximum Dice's Similarity Index (DSI) = 0.20 ± 0.06) than for infarct prediction models (maximum DSI = 0.81 ± 0.06). Multiparametric MRI-based predictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved treatment decision-making after acute ischemic stroke.
Izzy S, Mazwi NL, Martinez S, Spencer CA, Klein JP, Parikh G, Glenn MB, Greenberg SM, Greer DM, Wu O, Edlow BL.
Revisiting Grade 3 Diffuse Axonal Injury: Not All Brainstem Microbleeds are Prognostically Equal. Neurocrit Care 2017;27(2):199-207.
AbstractBACKGROUND: Recovery of functional independence is possible in patients with brainstem traumatic axonal injury (TAI), also referred to as "grade 3 diffuse axonal injury," but acute prognostic biomarkers are lacking. We hypothesized that the extent of dorsal brainstem TAI measured by burden of traumatic microbleeds (TMBs) correlates with 1-year functional outcome more strongly than does ventral brainstem, corpus callosal, or global brain TMB burden. Further, we hypothesized that TMBs within brainstem nuclei of the ascending arousal network (AAN) correlate with 1-year outcome.
METHODS: Using a prospective outcome database of patients treated for moderate-to-severe traumatic brain injury at an inpatient rehabilitation hospital, we retrospectively identified 39 patients who underwent acute gradient-recalled echo (GRE) magnetic resonance imaging (MRI). TMBs were counted on the acute GRE scans globally and in the dorsal brainstem, ventral brainstem, and corpus callosum. TMBs were also mapped onto an atlas of AAN nuclei. The primary outcome was the disability rating scale (DRS) score at 1 year post-injury. Associations between regional TMBs, AAN TMB volume, and 1-year DRS score were assessed by calculating Spearman rank correlation coefficients.
RESULTS: Mean ± SD number of TMBs was: dorsal brainstem = 0.7 ± 1.4, ventral brainstem = 0.2 ± 0.6, corpus callosum = 1.8 ± 2.8, and global = 14.4 ± 12.5. The mean ± SD TMB volume within AAN nuclei was 6.1 ± 18.7 mm3. Increased dorsal brainstem TMBs and larger AAN TMB volume correlated with worse 1-year outcomes (R = 0.37, p = 0.02, and R = 0.36, p = 0.02, respectively). Global, callosal, and ventral brainstem TMBs did not correlate with outcomes.
CONCLUSIONS: These findings suggest that dorsal brainstem TAI, especially involving AAN nuclei, may have greater prognostic utility than the total number of lesions in the brain or brainstem.
Etherton MR, Wu O, Cougo P, Giese A-K, Cloonan L, Fitzpatrick KM, Kanakis AS, Boulouis G, Karadeli HH, Lauer A, Rosand J, Furie KL, Rost NS.
Structural Integrity of Normal Appearing White Matter and Sex-Specific Outcomes After Acute Ischemic Stroke. Stroke 2017;48(12):3387-3389.
AbstractBACKGROUND AND PURPOSE: Women have worse poststroke outcomes than men. We evaluated sex-specific clinical and neuroimaging characteristics of white matter in association with functional recovery after acute ischemic stroke.
METHODS: We performed a retrospective analysis of acute ischemic stroke patients with admission brain MRI and 3- to 6-month modified Rankin Scale score. White matter hyperintensity and acute infarct volume were quantified on fluid-attenuated inversion recovery and diffusion tensor imaging MRI, respectively. Diffusivity anisotropy metrics were calculated in normal appearing white matter contralateral to the acute ischemia.
RESULTS: Among 319 patients with acute ischemic stroke, women were older (68.0 versus 62.7 years; P=0.004), had increased incidence of atrial fibrillation (21.4% versus 12.2%; P=0.04), and lower rate of tobacco use (21.1% versus 35.9%; P=0.03). There was no sex-specific difference in white matter hyperintensity volume, acute infarct volume, National Institutes of Health Stroke Scale, prestroke modified Rankin Scale score, or normal appearing white matter diffusivity anisotropy metrics. However, women were less likely to have an excellent outcome (modified Rankin Scale score <2: 49.6% versus 67.0%; P=0.005). In logistic regression analysis, female sex and the interaction of sex with fractional anisotropy, radial diffusivity, and axial diffusivity were independent predictors of functional outcome.
CONCLUSIONS: Female sex is associated with decreased likelihood of excellent outcome after acute ischemic stroke. The correlation between markers of white matter integrity and functional outcomes in women, but not men, suggests a potential sex-specific mechanism.